
JOURNAL OF APPROXIMATION THEORY 38, 269-278 (1983)

Convergence of Generalized Inverses
and Spline Projectors

SAICHI IZUMINO

Faculty oj Education, Toyama University, Toyama-shi 930, Japan

Communicated by Carl de Boor

Received February 8, 1982

DEDICATED TO THE MEMORY OF PROFESSOR TEl SHIRO SAITO

INTRODUCTION

The theory of generalized inverses has provided operator theoretic
approaches in many areas related to least-squares solutions of linear
equations (see, e.g., [11]). As its recent applications (in approximation
theory) we find, for example, Chang [4] on minimum norm interpolation,
Delvos [5] on interpolating splines, Delvos and Shempp 16] on optimal
approximation, and Groetsch [8] on generalized splines.

Our aim is to show that the generalized inverse method is applicable to the
convergence problem of abstract spline projectors; we shall give some
refinements of theorems due to de Boor r3] and Shekhtman 1131 on the
convergence of abstract splines.

1. PRELIMINARIES

Let Hand K be Hilbert spaces, and let A E B(H, K) be a bounded linear
operator from H into K. If A has closed range, then, as is well-known 12]
[7], there exists a unique operator AtE B(K, H) satisfying the following four
Penrose identitie~:

and

The operator A t is called the generalized inverse of A. We shall denote by
CR(H, K) the set of all operators in B(H, K) with closed range. If we write
ran A and ker A for the range and the kernel of A (E CR(H, K)), respec
tively, then the products AA t and A +A are orthoprojectors (or orthogonal
projections) onto ran A and (ker A).L, the orthocomplement of ker A, respec-
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tively. As the variational properties of generalized inverses, we know 17,91
that for each v E K the set of all least-squares solutions of the equation
Au = v, i.e., the set of all minimizers of IIAu - vii is given by

(1.1 )

and furthermore, Uo :=Atv is the (unique) best approximate solution of
Au = v, i.e., Uo is the minimizer with minimal norm.

Next, in order to define a spline interpolant (or abstract spline), let
T E CR(H, K) and let L be a closed linear subspace of H. Then for a given
x E H, an element y E x +L 1 is called a (T, L )-spline interpolant of x 13 J if

II Tyll = inf{11 TzlI: z E x + L 1
}.

Denote by sp(T, L, x) the set of all (T, L )-spline interpolants of x, and let P
(resp. p1 := I - P) be the orthoprojector onto L (resp. L 1). Then, by the first
variational property of generalized inverses, the set sp(T, L, x) is explicitly
represented (see Lemma 1.1) as

x- (Tply Tx+ (ker TnL 1
)

under the condition that

T(L 1) is closed. (1.2)

In [3], de Boor has already pointed out that sp(T, L, x) is nonempty and has
a unique element for each x E H if and only if

incl(ker T, L 1) < I, (1.3)

where incl(M, N), the inclination between two linear subspaces M and N, is
defined as the number

sup{!(m, n)l: mE M, n E N, Ilmil = Ilnll = I}.

Hence, by the representation of sp(T,L,x) we see [3J that (1.3) is equivalent
to (1.2) and the following condition together:

(1.4)

Now, putting

«1.2) is assumed),

we have the following basic result on spline interpolants:
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LEMMA 1.1. Let T E CR(H, K) and let P be the orthoprojector onto a
closed linear subspace L with (1.2). Then

(1) For each x E H, an element y E H is in sp(T, L, x) if and only if
y = Sx + w for some w E ker Tn L ~.

(2) The vector Yo = SPx is the (unique) element in sp(T, L, x) with
minimum norm.

(3) An operator R on H (i.e., R E B(H, H)) which maps each x E H to
an element in sp(T, L, x) is representable as R = S + W with some Won H
satisfying ran W c ker Tn L ~.

Proof Assertion (3) is easily obtained from (1). To see (1), let y =
x - P~u Ex +L \ u E H. Then II Tyll = II TP~u - Txll. Hence, by (1.1) II Tyll
is minimum if and only if u = (TP~/ Tx + 11 - (TP~)t(TP~)} w with some
w E H. This is equivalent to

for some WI E ker Tn L~. Assertion (2) could be obtained from [9, p. 228],
but we give a direct proof for completeness; it suffices to show that for any
y E sp(T, L, x) II yl12 = II y - SPxl1 2 + II SPxl1 2 or that y - SPx and SPx are
orthogonal. Since SP~x = 11 - (TP~) t (TP~) f P~x E ker Tn L \ we have, by
(1), that y - SPx = (y - Sx) + SP~x E ker Tn L~. On the other hand,

SPx = Px - (TP~)t TPx E L + ran(Tp~)t = L + ran(TP~)*

= L + (ker Tp.1).1 c (ker Tn L.1 )~.

Hereafter we shall call an operator R as in Lemma 1.1 (3) a (T, L )-spline
operator. Clearly, both Sand SP are such operators, but, in addition, they
are projectors (or idempotent operators). We shall call such projectors
(T, L )-spline projectors.

As a key fact for our further discussions, we state a lemma on generalized
inverses.

LEMMA 1.2 (cf. [10]). Let A E CR(H, K) and BE CR(I, H) (where I, H,
and K are Hilbert spaces.) Then A tABB E CR(H) := CR(H, H), and

(1.5)

In particular, if A is invertible, then II(ABn ~ IIA -11111 Btll.

Proof Let C=AtABBt and D =B(AB)tA. Then, by the Penrose iden-
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tities for A, B, and AB, we have CDC = C. This identity implies that
C E CR(H). Inequality (1.5) is now obtained from the identities

(AB)t = (AB)t AAtABBtCtAtABBtB(AB)t

= (AB)t(AB). BtCtA t . (AB)(AB)t.

For the case when A is invertible, it suffices to note that C becomes an
orthoprojector and Ct = C.

2. CONVERGENCE OF GENERALIZED INVERSES

The convergence problem of generalized inverses is clearly identical to the
perturbation problem of them. There are a number of results on this
problem; see Nashed [12] or Stewart [14] which contain many aspects for
perturbation theory of generalized inverses and contain some new results. In
this section we shall, for our later use, show some necessary and sufficient
conditions for the uniform or strong convergence of generalized inverses
(which are seemed not to have appeared).

Let An (n = 1,2'00') and A be operators in B(H, K). We then write An -->" A
if the sequence {An} converges to A uniformly, and An -->S A if it converges to
A strongly. When all An and A are in CR(H, K), under what condition is it
true that A ~ -->" A t? When Hand K are finite-dimensional, i.e., all operators
are matrices, the convergence A ~ -->" A t is guaranteed if (and only if)
rank An = rank A for all sufficiently large n [12, Theorem 3.51 or,
equivalently, AnA: -->" AA t (cf. [14, Theorem 2.3 D. We shall show that this
is also true in the general case.

LEMMA 2.1 [14, Theorems 3.2 and 3.3]. Let A,B E CR(H,K). Then

B t - At = -Bt(B - A) A t + BtB*t(B* - A *)(AA t)~

+ (BtB).l(B* -A*)A*+A+. (2.1)

IIBt _Atll,,;;; 3 max{IIB t I1 2
, IIA+11 2

} liB -A II. (2.2)

LEMMA 2.2. Let A, BE CR(H, K), and let liB - A II < IIA +11- 1
,

IIBBt - AAtl1 < 1. Then IIBtl1 ,,;;; 211A tll(l -IIA +IIIIB - A 11)-1.

Proof Write P = AA t and Q= BBt. Then, since IIP.lQI1 2 = II Qp.lQl1 =
II Q(Q - P) QII < 1, we see that 1 - p.lQ is invertible. We also see that
1 +At(B-A) is invertible, because IIAt(B-A)11 < 1. Now, by the identity
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(l-p1 Q)B =A{l +At(B -A)f or B = (l_p 1Q)-1 A{l +At(B -A)} and
by Lemma 1.2, we have

IIBtl1 ~ II I_p1 QII IIA tllll{ 1+A t(B -A)} -ill ~ 211A tll(I-IIA til liB -A 11)-1.

Remark. Under the stronger conditions liB - A II < IIA till,
IIBBt -AAtll < 1 and IIBtB -AtA II < I, Wedin [15, Corollary 2 of
Theorem 7.3] proved IIBtl1 ~ IIA t ll(1 -IIA t(B - A) A tA 11)- I.

PROPOSITION 2.3. Let {A n} be a sequence in CR(H, K), and let
An -t U A E CR(H, K). Then the following conditions are equivalent:

(1)

(2)

(2')

At-tUA t .
n '

A At -t U AA t .
n n '

A~An -t
U AtA.

Proof That (I) => (2), (2') is clear.

(2)=>(1) Note, by (2.2), that IIA~-Atll~3max{IIA:112,IIAtI12}

IIA n - A II. Hence we easily see that (I) is equivalent to

(2.3 )

To show (2.3), let n be sufficiently large. Then IIAnA: -AAtll < I and
IIA n -A II < IIAtlf- i. Hence, by Lemma 2.2

IIA:II ~ 211A t ll(1 -IIA tllllA n - A 11)-1.

This implies (2.3).

(2') => (1) In (2), replace A n and A by their adjoints A: and A *,
respectively.

We next show a simple (but equivalent) condition for the strong
convergence of generalized inverses, which is to be compared with
Proposition 2.3.

PROPOSITION 2.4. Let {A n} be a sequence in CR(H, K), and let
An -t

S A E CR(H, K). Then the following conditions are equivalent:

(I) A~-tsAt.

(2) sUPnIIA~11 < oo,AnA:-tsAAt,andA~An-tsAtA.

Proof If we assume (I), then the inequality in (2) is obtained from the
Banach-Steinhaus theorem, and the other assertions in (2) are easily seen by
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the uniform boundedness of {An} and {A:}. For the converse (2)=> (1), it
suffices to note

Remarks. (1) In contrast to the case of uniform convergence, we
cannot deduce the inequality sUPn IIA:II < 00 from AnA: --.' AA t (or
A:A n--.' AtA). For example, let

An=diag{l,..., 1, lin, lin,... } on H:= (2.

(2) An operator A <IJ E B(K, H) is called an outer inverse of
A E B(H, K) if A'"AA '" = A "'. Concerning the convergence of such general
generalized inverses, Anselone and Nashed [11 proved that if An --. U A (resp.
An --.' A) and, for each n, A ~ is an outer inverse of A n with ran A ~ ::J ran A "',
ker A ~ ::J ker A "', and sUPn IIA ~ II < 00, then A~ --.U A'" (resp. A ~ --.' A"').

The following result is on the relation between the strong convergence of
{A:} and {A:}; we do not assume the convergence of {A n} itself, but add
some weaker conditions:

PROPOSITION 2.5. Let {An} be a uniformly bounded sequence in
CR(H, K), and let A E CR(H, K). Then the following conditions are
equivalent:

(1) A: --.' A t and A:*A * --.' AA t (= A t *A *).

(2) sUPnIIA:11 < oo,A:--.'A*,andAnAt--.'AA t.

Proof (1) => (2) The inequality in (2) is clear (by the Banach
Steinhaus theorem). To see the convergence of {A:}, replace B and A in
(2.1) by A:* and A t *, respectively. Then, using the identity (Ct*)t = C*
(C E CR(H, K», we have

A: - A * = (A:*)t - (A t*)t

= - A:(A:*A * - A t*A *) + A:An(A: - A t)(AA t)1

+ (A:A n)1-(A: -At)AA *.

Hence, since {A:} and {An} are uniformly bounded, we have A: --.' A *. For
the (strong) convergence of lA nA *}, we have, for any x E H,

lim A Atx= lim A Atx= lim At*A*x= lim A**A*x=AAtx.n n n n n n
n~cc n-+oo n-+oc' n-+oo
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(2) => (1) Again, we use (2.1). Since

A~ - At = - A~(AnAt - AA t ) +A~A:+(A; - A *)(AA t)l

+ (A:An)l(A; -A*)(A*tA t ),
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and since {A:} is uniformly bounded, we have A~--->5 At. To see the
convergence of {A:*A *}, let x E H. Then

Remark. If we replace strong convergence by uniform convergence in the
above proposition, then the assumptions on the convergence of {A ~*A *} and
{AnA t } will be redundant, and the proposition will say that A~--->u At if and
only if An --->U A and sUPn IIA:II < 00, which was shown in the proof of
Proposition 2.3, (2) => (1).

Putting A = 0 (= At) in Proposition 2.5, we have:

COROLLARY 2.6. Let {A n} be a uniformly bounded sequence in
CR(H, K). Then A~ --->50 if and only ifsuPn IIA~II < 00 and A; --->5 O.

3. CONVERGENCE OF SPLINE PROJECTORS

Recall that for T E CR(H, K) and a closed linear subspace L in H
satisfying condition (1.2), i.e., that T(L l ) is closed, the (T, L)-spline
projector S is defined by S = 1 - (TPl )tT, where P is the orthoprojector
onto L. Let {L n } be a sequence of closed linear subspaces in H satisfying
(1.2), and let {Pn} and {Sn} (Sn = 1 - (TP;)tT) be the corresponding
orthoprojectors and spline projectors, respectively. Then, for the strong
convergence of {Sn} we have a refinement of a result due to de Boor [3,
Theorem 2].

THEOREM 3.1. Let {Sn} be a sequence of spline projectors defined as
above. Put Q = rT. Then thejollowing conditions are equivalent:

(1) Sn--->51.

(2) (TP;)t --->5 O.

(3) sUPn II(TP~)t II < 00 and P; T* --->' O.

(4) sUPnll(QP;)tll < 00 andP~Q--->50.
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Proof (1) <:> (2) Since (TP;;)t = (TP;;)t TTt = (TP;;)tT. Tt, we have
(TP;)t --->80 if and only if (TP;)tT--->8 O.

(2) <:> (3) This is true by Corollary 2.6.

(3)<:> (4) By (1.5) we have

and

II(QP;)tll = llett . TP;;nl ~ II Til II(TP;)tll II {TTt(TP;)(TP;;)t}11

= II Til II(TP;)tll II(TP;)(TP;)tll ~ II TIIII(TP;;)tll·

Hence the uniform boundedness of {(TP;) t} and {(QP;) t} are equivalent.
For the equivalence of the strong convergence, it suffices to note that Q=
T* . r * and T* = Q . T*.

Remarks. (1) For the product of two orthoprojectors Q and R on H
with QR E CR(H) we know [10] that

(3.1 )

where Q-L 1\ R is the orthoprojector onto ran Q-L n ran R. Hence the
inequality sUPn II(QP;;)tll < 00 in the theorem is equivalent to

sup II Q-L(Q-L 1\ P;)-L P; II < 1.
n

We easily see that this inequality means nothing but

sup incl(ker Tn (ker Tn L;)-L, L;) < 1.
n

(2) Define lim L n = {x: dist(x, L n) ---> Of. Then it is easy to see that the
condition P; Q --->80 in the theorem is equivalent to (ker T)-L c lim L n (cf.
[3 D.

By Lemma 1.1(3), all (T, Ln)-spline operators R n are represented as R n =
Sn + Wn with some Wn satisfying ran Wn c ker TnL;;. For the
convergence of such operators we have

PROPOSITION 3.2. Let {R n} be a sequence of spline operators as above.
Then, R n --->8 1 if and only if Sn --->8 1 and Wn --->8 O.

Proof It suffices to show that for any xEH, II(R n-l)xI1 2 =
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II(Sn - l)x11 2 + II W nxl1 2 or that (Sn - l)x and Wnx are orthogonal. Since
Wnx E ker TnL;;, and since

(Sn - l)x = (TP;;)t Tx E ran(Tp;;)t = ran(TP;;)*

= (ker TP;;)~ c (ker TnL;y-,

we obtain the desired relation.

In case dim ker T < 00, the following result holds; it was shown by
Shekhtman [13, Theorem 1] and de Boor [3, Theorem 1]. We give a different
proof, using generalized inverses.

THEOREM 3.3. Let {Sn} be a sequence of spline projectors defined as
before. Ifdimker T< 00, then Pn-. 5 1 implies Sn-. 5 1.

Proof Write Q = rtT. Then clearly P;;Q -.5 O. To see Sn -.5 1, it
suffices, by Theorem 3.1, to show that {(QP;;)t} is uniformly bounded. Since
Q~ has finite rank, we easily see P;; Q~ -." O. The uniform boundedness of
{(QP;;)t} is obtained from (putting R = P;; in (3.1) or) the identity

(3.2)

which is seen by the identity (1 - Q~P;;)(QP;;)t = (QP;;)(QP;;)t or (QP;;f =
(1- Q~P~)-I . (QP;;)(QP;;t

The following result is a modification of [3, Proposition 2]; we could give
a proof similar to the one in [3], but instead adopt the generalized inverse
method again:

PROPOSITION 3.4. Let Sn -.5 1 (8" is defined as before), and let
dim ker T < 00. Then Pn -.5 1 if and only if there exists a sequence jR,,} of
projectors and a projector R on H such that

and

Proof Write Q = rtT. If Pn -.5 1, then since rank Q~ is finite we see
PnQ~ -." Q~ and P;; Q~ -." O. Put R" = (PnQ~ )t. Then we see that each R" is
a projector and the sequence {R"l is uniformly bounded, say, by (3.2)
(exchange P" and Q). Hence R n -." (Q~)t = Q~ (cf. proof of Proposition 2.3).
Putting R = Q\ we at once obtain all the conditions in (3.3). Conversely,
assume that R n and R are projectors satisfying (3.3). Then, taking the limits
of R n= RnR: . R n and RnR~ = R" . RnR:, we see that ran R = ran Q~ or
RRt=Q~. Hence R"R:-."RRt, so that R:R n-." RtR, say, by
Proposition 2.3. Hence we have PnRtR -.5 RtR. Since 8,,-.5 1, we also have
P; Q -.5 0 or P" Q -.5 Q by Theorem 3.1. Hence all we have to do is to show
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that U:= RtR + Q is invertible or equivalently strictly positive (i.e.,
(Ux, x) > 0 for any x #0 0). Note that ker T = ran Rand R is a projector.
Hence (ker T).l = (ran R).l = (ker(1 - R»-l, that is, Q= (1 - R)\1 - R).
Since A *A ~ IIA 11

2 AtA (i.e., (A *Ax, x) ~ IIA 11
2 (A tAx, x» for A E CR(H), we

have

U=RtR + (l-R)t(l-R)~ IIRII- 2 R*R + III-RII- 2(I-R)*(I-R)

~ m{R*R + (l-R)*(1 -R)} ~ m· !{R + (I-R)}*{R + (l-R)} = !m,

where m=min{IIRII- 2,III-RII- 2
}. This completes the proof.
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