Convergence of Generalized Inverses and Spline Projectors

Saichi Izumino
Faculty of Education, Toyama University, Toyama-shi 930, Japan
Communicated by Carl de Boor

Received February 8, 1982

DEDICATED TO THE MEMORY OF PROFESSOR TEISHIRO SAITO

Introduction

The theory of generalized inverses has provided operator theoretic approaches in many areas related to least-squares solutions of linear equations (see, e.g., [11]). As its recent applications (in approximation theory) we find, for example, Chang [4] on minimum norm interpolation, Delvos [5] on interpolating splines, Delvos and Shempp [6] on optimal approximation, and Groetsch [8] on generalized splines.

Our aim is to show that the generalized inverse method is applicable to the convergence problem of abstract spline projectors; we shall give some refinements of theorems due to de Boor [3| and Shekhtman [13] on the convergence of abstract splines.

1. Preliminaries

Let H and K be Hilbert spaces, and let $A \in B(H, K)$ be a bounded linear operator from H into K. If A has closed range, then, as is well-known [2] [7], there exists a unique operator $A^{\dagger} \in B(K, H)$ satisfying the following four Penrose identities:

$$
A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger}, \quad\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad \text { and } \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

The operator A^{+}is called the generalized inverse of A. We shall denote by $\mathrm{CR}(H, K)$ the set of all operators in $B(H, K)$ with closed range. If we write $\operatorname{ran} A$ and $\operatorname{ker} A$ for the range and the kernel of $A(\in \mathrm{CR}(H, K))$, respectively, then the products $A A^{\dagger}$ and $A^{\dagger} A$ are orthoprojectors (or orthogonal projections) onto $\operatorname{ran} A$ and $(\operatorname{ker} A)^{\perp}$, the orthocomplement of $\operatorname{ker} A$, respec-
tively. As the variational properties of generalized inverses, we know $|7,9|$ that for each $v \in K$ the set of all least-squares solutions of the equation $A u=v$, i.e., the set of all minimizers of $\|A u-v\|$ is given by

$$
\begin{equation*}
\left\{A^{\dagger} v+\left(1-A^{\dagger} A\right) w: w \in H\right\} \tag{1.1}
\end{equation*}
$$

and furthermore, $u_{0}:=A^{\dagger} v$ is the (unique) best approximate solution of $A u=v$, i.e., u_{0} is the minimizer with minimal norm.

Next, in order to define a spline interpolant (or abstract spline), let $T \in \mathrm{CR}(H, K)$ and let L be a closed linear subspace of H. Then for a given $x \in H$, an element $y \in x+L^{\perp}$ is called a (T, L)-spline interpolant of $x[3]$ if

$$
\|T y\|=\inf \left\{\|T z\|: z \in x+L^{\perp}\right\} .
$$

Denote by $\operatorname{sp}(T, L, x)$ the set of all (T, L)-spline interpolants of x, and let P (resp. $P^{\perp}:=1-P$) be the orthoprojector onto L (resp. L^{\perp}). Then, by the first variational property of generalized inverses, the set $\operatorname{sp}(T, L, x)$ is explicitly represented (see Lemma 1.1) as

$$
x-\left(T P^{\perp}\right)^{\dagger} T x+\left(\text { ker } T \cap L^{\perp}\right)
$$

under the condition that

$$
\begin{equation*}
T\left(L^{\perp}\right) \text { is closed. } \tag{1.2}
\end{equation*}
$$

In [3], de Boor has already pointed out that $\operatorname{sp}(T, L, x)$ is nonempty and has a unique element for each $x \in H$ if and only if

$$
\begin{equation*}
\operatorname{incl}\left(\operatorname{ker} T, L^{1}\right)<1 \tag{1.3}
\end{equation*}
$$

where $\operatorname{incl}(M, N)$, the inclination between two linear subspaces M and N, is defined as the number

$$
\sup \{|(m, n)|: m \in M, n \in N,\|m\|=\|n\|=1\}
$$

Hence, by the representation of $\operatorname{sp}(T, L, x)$ we see [3] that (1.3) is equivalent to (1.2) and the following condition together:

$$
\begin{equation*}
\operatorname{ker} T \cap L^{\perp}=\{0\} . \tag{1.4}
\end{equation*}
$$

Now, putting

$$
S=1-\left(T P^{\perp}\right)^{\dagger} T \quad((1.2) \text { is assumed })
$$

we have the following basic result on spline interpolants:

Lemma 1.1. Let $T \in \mathrm{CR}(H, K)$ and let P be the orthoprojector onto a closed linear subspace L with (1.2). Then
(1) For each $x \in H$, an element $y \in H$ is in $\operatorname{sp}(T, L, x)$ if and only if $y=S x+w$ for some $w \in \operatorname{ker} T \cap L^{\perp}$.
(2) The vector $y_{0}=S P x$ is the (unique) element in $\operatorname{sp}(T, L, x)$ with minimum norm.
(3) An operator R on H (i.e., $R \in B(H, H)$) which maps each $x \in H$ to an element in $\operatorname{sp}(T, L, x)$ is representable as $R=S+W$ with some W on H satisfying ran $W \subset \operatorname{ker} T \cap L^{\perp}$.

Proof. Assertion (3) is easily obtained from (1). To see (1), let $y=$ $x-P^{\perp} u \in x+L^{\perp}, u \in H$. Then $\|T y\|=\left\|T P^{\perp} u-T x\right\|$. Hence, by (1.1) $\|T y\|$ is minimum if and only if $u=\left(T P^{\perp}\right)^{\dagger} T x+\left\{1-\left(T P^{\perp}\right)^{\dagger}\left(T P^{\perp}\right)\right\} w$ with some $w \in H$. This is equivalent to

$$
y=x-P^{\perp}\left[\left(T P^{\perp}\right)^{\dagger} T x+\left\{1-\left(T P^{\perp}\right)^{\dagger}\left(T P^{\perp}\right)\right\} w\right]=S x+w_{1}
$$

for some $w_{1} \in \operatorname{ker} T \cap L^{\perp}$. Assertion (2) could be obtained from [9, p. 228], but we give a direct proof for completeness; it suffices to show that for any $y \in \operatorname{sp}(T, L, x)\|y\|^{2}=\|y-S P x\|^{2}+\|S P x\|^{2}$ or that $y-S P x$ and $S P x$ are orthogonal. Since $S P^{\perp} x=\left\{1-\left(T P^{\perp}\right)^{\dagger}\left(T P^{\perp}\right)\right\} P^{\perp} x \in$ ker $T \cap L^{\perp}$, we have, by (1), that $y-S P x=(y-S x)+S P^{\perp} x \in$ ker $T \cap L^{\perp}$. On the other hand,

$$
\begin{aligned}
S P x & =P x-\left(T P^{\perp}\right)^{\dagger} T P x \in L+\operatorname{ran}\left(T P^{\perp}\right)^{\dagger}=L+\operatorname{ran}\left(T P^{\perp}\right)^{*} \\
& =L+\left(\operatorname{ker} T P^{\perp}\right)^{\perp} \subset\left(\operatorname{ker} T \cap L^{\perp}\right)^{\perp} .
\end{aligned}
$$

Hereafter we shall call an operator R as in Lemma 1.1(3) a (T, L)-spline operator. Clearly, both S and $S P$ are such operators, but, in addition, they are projectors (or idempotent operators). We shall call such projectors (T, L)-spline projectors.

As a key fact for our further discussions, we state a lemma on generalized inverses.

Lemma 1.2 (cf. [10]). Let $A \in \mathrm{CR}(H, K)$ and $B \in \mathrm{CR}(I, H)$ (where I, H, and K are Hilbert spaces.) Then $A^{\dagger} A B B \in \mathrm{CR}(H):=\mathrm{CR}(H, H)$, and

$$
\begin{equation*}
\left\|(A B)^{\dagger}\right\| \leqslant\left\|A^{\dagger}\right\|\left\|B^{\dagger}\right\|\left\|\left(A^{\dagger} A B B^{\dagger}\right)^{\dagger}\right\| \tag{1.5}
\end{equation*}
$$

In particular, if A is invertible, then $\left\|(A B)^{\dagger}\right\| \leqslant\left\|A^{-1}\right\|\left\|B^{\dagger}\right\|$.
Proof. Let $C=A^{\dagger} A B B^{\dagger}$ and $D=B(A B)^{\dagger} A$. Then, by the Penrose iden-
tities for A, B, and $A B$, we have $C D C=C$. This identity implies that $C \in \mathrm{CR}(H)$. Inequality (1.5) is now obtained from the identities

$$
\begin{aligned}
(A B)^{\dagger} & =(A B)^{\dagger} A A^{\dagger} A B B^{\dagger} C^{\dagger} A^{\dagger} A B B^{\dagger} B(A B)^{\dagger} \\
& =(A B)^{\dagger}(A B) \cdot B^{\dagger} C^{\dagger} A^{\dagger} \cdot(A B)(A B)^{\dagger}
\end{aligned}
$$

For the case when A is invertible, it suffices to note that C becomes anorthoprojector and $C^{\dagger}=C$.

2. Convergence of Generalized Inverses

The convergence problem of generalized inverses is clearly identical to the perturbation problem of them. There are a number of results on this problem; see Nashed [12] or Stewart [14] which contain many aspects for perturbation theory of generalized inverses and contain some new results. In this section we shall, for our later use, show some necessary and sufficient conditions for the uniform or strong convergence of generalized inverses (which are seemed not to have appeared).

Let $A_{n}(n=1,2, \ldots)$ and A be operators in $B(H, K)$. We then write $A_{n} \rightarrow{ }^{u} A$ if the sequence $\left\{A_{n}\right\}$ converges to A uniformly, and $A_{n} \rightarrow{ }^{\mathrm{s}} A$ if it converges to A strongly. When all A_{n} and A are in $\operatorname{CR}(H, K)$, under what condition is it true that $A_{n}^{\dagger} \rightarrow{ }^{\text {" }} A^{\dagger}$? When H and K are finite-dimensional, i.e., all operators are matrices, the convergence $A_{n}^{\dagger} \rightarrow{ }^{\mathrm{u}} A^{\dagger}$ is guaranteed if (and only if) $\operatorname{rank} A_{n}=\operatorname{rank} A$ for all sufficiently large $n[12$, Theorem 3.5] or, equivalently, $A_{n} A_{n}^{\dagger} \rightarrow^{\text {" }} A A^{\dagger}$ (cf. [14, Theorem 2.3]). We shall show that this is also true in the general case.

Lemma 2.1 [14, Theorems 3.2 and 3.3]. Let $A, B \in \mathrm{CR}(H, K)$. Then

$$
\begin{align*}
& B^{\dagger}-A^{\dagger}=-B^{\dagger}(B-A) A^{\dagger}+B^{\dagger} B^{*^{\dagger}}\left(B^{*}-A^{*}\right)\left(A A^{\dagger}\right)^{+} \\
&+\left(B^{\dagger} B\right)^{\perp}\left(B^{*}-A^{*}\right) A^{*^{\dagger}} A^{\dagger} . \tag{2.1}\\
&\left\|B^{\dagger}-A^{\dagger}\right\| \leqslant 3 \max \left\{\left\|B^{\dagger}\right\|^{2},\left\|A^{\dagger}\right\|^{2}\right\}\|B-A\| . \tag{2.2}
\end{align*}
$$

Lemma 2.2. Let $A, B \in \mathrm{CR}(H, K)$, and let $\|B-A\|<\left\|A^{\dagger}\right\|^{-1}$, $\left\|B B^{\dagger}-A A^{\dagger}\right\|<1$. Then $\left\|B^{\dagger}\right\| \leqslant 2\left\|A^{\dagger}\right\|\left(1-\left\|A^{\dagger}\right\|\|B-A\|\right)^{-1}$.

Proof. Write $P=A A^{\dagger}$ and $Q=B B^{\dagger}$. Then, since $\left\|P^{\perp} Q\right\|^{2}=\left\|Q P^{\perp} Q\right\|=$ $\|Q(Q-P) Q\|<1$, we see that $1-P^{\perp} Q$ is invertible. We also see that $1+A^{\dagger}(B-A)$ is invertible, because $\left\|A^{\dagger}(B-A)\right\|<1$. Now, by the identity
$\left(1-P^{\perp} Q\right) B=A\left\{1+A^{\dagger}(B-A)\right\}$ or $B=\left(1-P^{\perp} Q\right)^{-1} A\left\{1+A^{\dagger}(B-A)\right\}$ and by Lemma 1.2, we have

$$
\left\|B^{\dagger}\right\| \leqslant\left\|1-P^{\perp} Q\right\|\left\|A^{\dagger}\right\|\left\|\left\{1+A^{\dagger}(B-A)\right\}^{-1}\right\| \leqslant 2\left\|A^{\dagger}\right\|\left(1-\left\|A^{\dagger}\right\|\|B-A\|\right)^{-1} .
$$

Remark. Under the stronger conditions $\|B-A\|<\left\|A^{\dagger}\right\|^{-1}$, $\left\|B B^{\dagger}-A A^{\dagger}\right\|<1$ and $\left\|B^{\dagger} B-A^{\dagger} A\right\|<1$, Wedin $\quad 15$, Corollary 2 of Theorem 7.3] proved $\left\|B^{\dagger}\right\| \leqslant\left\|A^{\dagger}\right\|\left(1-\left\|A^{\dagger}(B-A) A^{\dagger} A\right\|\right)^{-1}$.

Proposition 2.3. Let $\left\{A_{n}\right\}$ be a sequence in $\mathrm{CR}(H, K)$, and let $A_{n} \rightarrow^{u} A \in \mathrm{CR}(H, K)$. Then the following conditions are equivalent:
(1) $A_{n}^{\dagger} \rightarrow{ }^{"} A^{\dagger}$;
(2) $A_{n} A_{n}^{+} \rightarrow{ }^{\mathrm{u}} A A^{\dagger}$;
(2') $A_{n}^{\dagger} A_{n} \rightarrow^{4} A^{\dagger} A$.
Proof. That $(1) \Rightarrow(2),\left(2^{\prime}\right)$ is clear.
(2) \Rightarrow (1) Note, by (2.2), that $\left\|A_{n}^{\dagger}-A^{\dagger}\right\| \leqslant 3 \max \left\{\left\|A_{n}^{\dagger}\right\|^{2},\left\|A^{\dagger}\right\|^{2}\right\}$ $\left\|A_{n}-A\right\|$. Hence we easily see that (1) is equivalent to

$$
\begin{equation*}
\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty . \tag{2.3}
\end{equation*}
$$

To show (2.3), let n be sufficiently large. Then $\left\|A_{n} A_{n}^{\dagger}-A A^{\dagger}\right\|<1$ and $\left\|A_{n}-A\right\|<\left\|A^{+}\right\|^{-1}$. Hence, by Lemma 2.2

$$
\left\|A_{n}^{\dagger}\right\| \leqslant 2\left\|A^{\dagger}\right\|\left(1-\left\|A^{\dagger}\right\|\left\|A_{n}-A\right\|\right)^{-1}
$$

This implies (2.3).
$\left(2^{\prime}\right) \Rightarrow(1)$ In (2), replace A_{n} and A by their adjoints A_{n}^{*} and A^{*}, respectively.

We next show a simple (but equivalent) condition for the strong convergence of generalized inverses, which is to be compared with Proposition 2.3.

Proposition 2.4. Let $\left\{A_{n}\right\}$ be a sequence in $\mathrm{CR}(H, K)$, and let $A_{n} \rightarrow^{\mathrm{s}} A \in \mathrm{CR}(H, K)$. Then the following conditions are equivalent:
(1) $A_{n}^{\dagger} \rightarrow{ }^{\mathrm{s}} A^{\dagger}$.
(2) $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty, A_{n} A_{n}^{\dagger} \rightarrow{ }^{\mathrm{s}} A A^{\dagger}$, and $A_{n}^{\dagger} A_{n} \rightarrow^{\mathrm{s}} A^{\dagger} A$.

Proof. If we assume (1), then the inequality in (2) is obtained from the Banach-Steinhaus theorem, and the other assertions in (2) are easily seen by
the uniform boundedness of $\left\{A_{n}\right\}$ and $\left\{A_{n}^{+}\right\}$. For the converse $(2) \Rightarrow(1)$, it suffices to note

$$
A_{n}^{\dagger}-A^{\dagger}=\left(A_{n}^{\dagger} A_{n}-A^{\dagger} A\right) A^{\dagger}-A_{n}^{\dagger}\left(A_{n}-A\right) A^{\dagger}+A_{n}^{\dagger}\left(A_{n} A_{n}^{\dagger}-A A^{\dagger}\right) .
$$

Remarks. (1) In contrast to the case of uniform convergence, we cannot deduce the inequality $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$ from $A_{n} A_{n}^{\dagger} \rightarrow{ }^{\mathrm{s}} A A^{\dagger}$ (or $A_{n}^{\dagger} A_{n} \rightarrow^{\mathrm{s}} A^{\dagger} A$). For example, let

$$
A_{n}=\operatorname{diag}\{\overbrace{1, \ldots, 1}^{n}, 1 / n, 1 / n, \ldots\} \quad \text { on } \quad H:=t^{2}
$$

(2) An operator $A^{\oplus} \in B(K, H)$ is called an outer inverse of $A \in B(H, K)$ if $A^{\phi} A A^{\phi}=A^{\phi}$. Concerning the convergence of such general generalized inverses, Anselone and Nashed [1] proved that if $A_{n} \rightarrow{ }^{4} A$ (resp. $A_{n} \rightarrow^{\mathrm{s}} A$) and, for each n, A_{n}^{ϕ} is an outer inverse of A_{n} with ran $A_{n}^{\phi} \supset \operatorname{ran} A^{\phi}$, $\operatorname{ker} A_{n}^{\phi} \supset \operatorname{ker} A^{\phi}$, and $\sup _{n}\left\|A_{n}^{\phi}\right\|<\infty$, then $A_{n}^{\phi} \rightarrow{ }^{\text {" }} A^{\phi}\left(\right.$ resp. $\left.A_{n}^{\phi} \rightarrow^{s} A^{\phi}\right)$.

The following result is on the relation between the strong convergence of $\left\{A_{n}^{\dagger}\right\}$ and $\left\{A_{n}^{*}\right\}$; we do not assume the convergence of $\left\{A_{n}\right\}$ itself, but add some weaker conditions:

Proposition 2.5. Let $\left\{A_{n}\right\}$ be a uniformly bounded sequence in $\mathrm{CR}(H, K)$, and let $A \in \mathrm{CR}(H, K)$. Then the following conditions are equivalent:
(1) $A_{n}^{\dagger} \rightarrow{ }^{\mathrm{s}} A^{\dagger}$ and $A_{n}^{\dagger *} A^{*} \rightarrow{ }^{\mathrm{s}} A A^{\dagger}\left(=A^{\dagger *} A^{*}\right)$.
(2) $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty, A_{n}^{*} \rightarrow{ }^{\mathrm{s}} A^{*}$, and $A_{n} A^{\dagger} \rightarrow{ }^{\mathrm{s}} A A^{\dagger}$.

Proof. (1) \Rightarrow (2) The inequality in (2) is clear (by the BanachSteinhaus theorem). To see the convergence of $\left\{A_{n}^{*}\right\}$, replace B and A in (2.1) by $A_{n}^{\dagger} *$ and $A^{\dagger *}$, respectively. Then, using the identity $\left(C^{\dagger} *\right)^{\dagger}=C^{*}$ $(C \in \mathrm{CR}(H, K))$, we have

$$
\begin{aligned}
A_{n}^{*}-A^{*}= & \left(A_{n}^{\dagger}\right)^{\dagger}-\left(A^{+} *\right)^{\dagger} \\
= & -A_{n}^{*}\left(A_{n}^{\dagger} * A^{*}-A^{\dagger} * A^{*}\right)+A_{n}^{*} A_{n}\left(A_{n}^{\dagger}-A^{\dagger}\right)\left(A A^{\dagger}\right)^{\perp} \\
& +\left(A_{n}^{\dagger} A_{n}\right)^{\perp}\left(A_{n}^{\dagger}-A^{\dagger}\right) A A^{*} .
\end{aligned}
$$

Hence, since $\left\{A_{n}^{\dagger}\right\}$ and $\left\{A_{n}\right\}$ are uniformly bounded, we have $A_{n}^{*} \rightarrow{ }^{\mathrm{s}} A^{*}$. For the (strong) convergence of $\left\{A_{n} A^{\dagger}\right\}$, we have, for any $x \in H$,

$$
\lim _{n \rightarrow \infty} A_{n} A^{\dagger} x=\lim _{n \rightarrow \infty} A_{n} A_{n}^{\dagger} x=\lim _{n \rightarrow \infty} A_{n}^{\dagger *} A_{n}^{*} x=\lim _{n \rightarrow \infty} A_{n}^{+*} A^{*} x=A A^{+} x
$$

$(2) \Rightarrow$ (1) Again, we use (2.1). Since

$$
\begin{aligned}
A_{n}^{\dagger}-A^{\dagger}= & -A_{n}^{\dagger}\left(A_{n} A^{\dagger}-A A^{\dagger}\right)+A_{n}^{\dagger} A_{n}^{*^{\dagger}}\left(A_{n}^{*}-A^{*}\right)\left(A A^{\dagger}\right)^{\perp} \\
& +\left(A_{n}^{\dagger} A_{n}\right)^{\perp}\left(A_{n}^{*}-A^{*}\right)\left(A^{* \dagger} A^{\dagger}\right)
\end{aligned}
$$

and since $\left\{A_{n}^{\dagger}\right\}$ is uniformly bounded, we have $A_{n}^{\dagger} \rightarrow{ }^{\mathrm{s}} A^{\dagger}$. To see the convergence of $\left\{A_{n}^{\dagger *} A^{*}\right\}$, let $x \in H$. Then

$$
\lim _{n \rightarrow \infty} A_{n}^{+} * A^{*} x=\lim _{n \rightarrow \infty} A_{n}^{+} * A_{n}^{*} x=\lim _{n \rightarrow \infty} A_{n} A_{n}^{+} x=\lim _{n \rightarrow \infty} A_{n} A^{+} x=A A^{+} x
$$

Remark. If we replace strong convergence by uniform convergence in the above proposition, then the assumptions on the convergence of $\left\{A_{n}^{\dagger *} A^{*}\right\}$ and $\left\{A_{n} A^{+}\right\}$will be redundant, and the proposition will say that $A_{n}^{\dagger} \rightarrow{ }^{n} A^{\dagger}$ if and only if $A_{n} \rightarrow^{\text {" }} A$ and $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$, which was shown in the proof of Proposition 2.3, (2) $\Rightarrow(1)$.

Putting $A=0\left(=A^{\dagger}\right)$ in Proposition 2.5, we have:

Corollary 2.6. Let $\left\{A_{n}\right\}$ be a uniformly bounded sequence in $\mathrm{CR}(H, K)$. Then $A_{n}^{+} \rightarrow^{\mathrm{s}} 0$ if and only if $\sup _{n}\left\|A_{n}^{\dagger}\right\|<\infty$ and $A_{n}^{*} \rightarrow{ }^{\mathrm{s}} 0$.

3. Convergence of Spline Projectors

Recall that for $T \in \mathrm{CR}(H, K)$ and a closed linear subspace L in H satisfying condition (1.2), i.e., that $T\left(L^{\perp}\right)$ is closed, the (T, L)-spline projector S is defined by $S=1-\left(T P^{\perp}\right)^{+} T$, where P is the orthoprojector onto L. Let $\left\{L_{n}\right\}$ be a sequence of closed linear subspaces in H satisfying (1.2), and let $\left\{P_{n}\right\}$ and $\left\{S_{n}\right\} \quad\left(S_{n}=1-\left(T P_{n}^{\perp}\right)^{\dagger} T\right)$ be the corresponding orthoprojectors and spline projectors, respectively. Then, for the strong convergence of $\left\{S_{n}\right\}$ we have a refinement of a result due to de Boor $[3$, Theorem 2].

Theorem 3.1. Let $\left\{S_{n}\right\}$ be a sequence of spline projectors defined as above. Put $Q=T^{+} T$. Then the following conditions are equivalent:
(1) $S_{n} \rightarrow^{5} 1$.
(2) $\left(T P_{n}^{\perp}\right)^{\dagger} \rightarrow{ }^{5} 0$.
(3) $\sup _{n}\left\|\left(T P_{n}^{\perp}\right)^{\dagger}\right\|<\infty$ and $P_{n}^{\perp} T^{*} \rightarrow{ }^{5} 0$.
(4) $\sup _{n}\left\|\left(Q P_{n}^{\perp}\right)^{\dagger}\right\|<\infty$ and $P_{n}^{\perp} Q \rightarrow{ }^{\mathrm{s}} 0$.

Proof. (1) \Leftrightarrow (2) Since $\left(T P_{n}^{\perp}\right)^{\dagger}=\left(T P_{n}^{\perp}\right)^{\dagger} T T^{\dagger}=\left(T P_{n}^{\perp}\right)^{\dagger} T \cdot T^{\dagger}$, we have $\left(T P_{n}^{\perp}\right)^{\dagger} \rightarrow^{\mathrm{s}} 0$ if and only if $\left(T P_{n}^{\perp}\right)^{\dagger} T \rightarrow{ }^{\mathrm{s}} 0$.
$(2) \Leftrightarrow(3) \quad$ This is true by Corollary 2.6.
$(3) \Leftrightarrow(4) \quad$ By (1.5) we have

$$
\left\|\left(T P_{n}^{\perp}\right)^{\dagger}\right\| \leqslant\left\|T^{\dagger}\right\|\left\|P_{n}^{\perp}\right\|\left\|\left(T^{\dagger} T P_{n}^{\perp}\right)^{\dagger}\right\| \leqslant\left\|T^{\dagger}\right\|\left\|\left(Q P_{n}^{\perp}\right)^{\dagger}\right\|
$$

and

$$
\begin{aligned}
\left\|\left(Q P_{n}^{\perp}\right)^{\dagger}\right\| & =\left\|\left(T^{\dagger} \cdot T P_{n}^{\perp}\right)^{\dagger}\right\| \leqslant\|T\|\left\|\left(T P_{n}^{\perp}\right)^{\dagger}\right\|\left\|\left\{T T^{\dagger}\left(T P_{n}^{\perp}\right)\left(T P_{n}^{\perp}\right)^{\dagger}\right\}\right\| \\
& =\|T\| \|\left(T P_{n}^{\perp}{ }^{\dagger}\| \|\left(T P_{n}^{\perp}\right)\left(T P_{n}^{\perp}\right)^{\dagger}\|\leqslant\| T\| \|\left(T P_{n}^{\perp}\right)^{\dagger} \| .\right.
\end{aligned}
$$

Hence the uniform boundedness of $\left\{\left(T P_{n}^{\perp}\right)^{\dagger}\right\}$ and $\left\{\left(Q P_{n}^{\perp}\right)^{\dagger}\right\}$ are equivalent. For the equivalence of the strong convergence, it suffices to note that $Q=$ $T^{*} \cdot T^{*}$ and $T^{*}=Q \cdot T^{*}$.

Remarks. (1) For the product of two orthoprojectors Q and R on H with $Q R \in \mathrm{CR}(H)$ we know [10] that

$$
\begin{equation*}
\left\|(Q R)^{\dagger}\right\|^{-2}+\left\|Q^{\perp}\left(Q^{\perp} \wedge R\right)^{\perp} R\right\|^{2}=1 \tag{3.1}
\end{equation*}
$$

where $Q^{\perp} \wedge R$ is the orthoprojector onto ran $Q^{\perp} \cap$ ran R. Hence the inequality $\sup _{n}\left\|\left(Q P_{n}^{\perp}\right)^{\dagger}\right\|<\infty$ in the theorem is equivalent to

$$
\sup _{n}\left\|Q^{\perp}\left(Q^{\perp} \wedge P_{n}^{\perp}\right)^{\perp} P_{n}^{\perp}\right\|<1
$$

We easily see that this inequality means nothing but

$$
\sup \operatorname{incl}\left(\operatorname{ker} T \cap\left(\operatorname{ker} T \cap L_{n}^{\perp}\right)^{\perp}, L_{n}^{\perp}\right)<1
$$

(2) Define $\left\lfloor L_{n}=\left\{x: \operatorname{dist}\left(x, L_{n}\right) \rightarrow 0\right\}\right.$. Then it is easy to see that the condition $P_{n}^{\perp} Q \rightarrow{ }^{\mathrm{s}} 0$ in the theorem is equivalent to (ker $\left.T\right)^{\perp} \subset \underline{\lim } L_{n}$ (cf. [3]).

By Lemma 1.1(3), all (T, L_{n})-spline operators R_{n} are represented as $R_{n}=$ $S_{n}+W_{n}$ with some W_{n} satisfying $\quad \operatorname{ran} W_{n} \subset \operatorname{ker} T \cap L_{n}^{\perp}$. For the convergence of such operators we have

Proposition 3.2. Let $\left\{R_{n}\right\}$ be a sequence of spline operators as above. Then, $R_{n} \rightarrow^{\mathrm{s}} 1$ if and only if $S_{n} \rightarrow^{\mathrm{s}} 1$ and $W_{n} \rightarrow{ }^{\mathrm{s}} 0$.

Proof. It suffices to show that for any $x \in H,\left\|\left(R_{n}-1\right) x\right\|^{2}=$
$\left\|\left(S_{n}-1\right) x\right\|^{2}+\left\|W_{n} x\right\|^{2}$ or that $\left(S_{n}-1\right) x$ and $W_{n} x$ are orthogonal. Since $W_{n} x \in \operatorname{ker} T \cap L_{n}^{\perp}$, and since

$$
\begin{aligned}
\left(S_{n}-1\right) x & =\left(T P_{n}^{\perp}\right)^{\dagger} T x \in \operatorname{ran}\left(T P_{n}^{\perp}\right)^{\dagger}=\operatorname{ran}\left(T P_{n}^{\perp}\right)^{*} \\
& =\left(\operatorname{ker} T P_{n}^{\perp}\right)^{\perp} \subset\left(\operatorname{ker} T \cap L_{n}^{\perp}\right)^{\perp},
\end{aligned}
$$

we obtain the desired relation.
In case $\operatorname{dim} \operatorname{ker} T<\infty$, the following result holds; it was shown by Shekhtman [13, Theorem 1] and de Boor [3, Theorem 1]. We give a different proof, using generalized inverses.

Theorem 3.3. Let $\left\{S_{n}\right\}$ be a sequence of spline projectors defined as before. If dim ker $T<\infty$, then $P_{n} \rightarrow^{\mathbf{s}} 1$ implies $S_{n} \rightarrow{ }^{\mathrm{s}} 1$.

Proof. Write $Q=T^{\dagger} T$. Then clearly $P_{n}^{\perp} Q \rightarrow{ }^{5} 0$. To see $S_{n}{ }^{5} 1$, it suffices, by Theorem 3.1, to show that $\left\{\left(Q P_{n}^{\perp}{ }^{\dagger}\right\}\right.$ is uniformly bounded. Since Q^{\perp} has finite rank, we easily see $P_{n}^{\perp} Q^{\perp} \rightarrow{ }^{4} 0$. The uniform boundedness of $\left\{\left(Q P_{n}^{\perp}\right)^{\dagger}\right\}$ is obtained from (putting $R=P_{n}^{\perp}$ in (3.1) or) the identity

$$
\begin{equation*}
\left\|\left(Q P_{n}^{\perp}\right)^{\dagger}\right\| \leqslant\left\|\left(1-Q^{\perp} P_{n}^{\perp}\right)^{-1}\right\|(\rightarrow 1), \tag{3.2}
\end{equation*}
$$

which is seen by the identity $\left(1-Q^{\perp} P_{n}^{\perp}\right)\left(Q P_{n}^{\perp}\right)^{\dagger}=\left(Q P_{n}^{\perp}\right)\left(Q P_{n}^{\perp}\right)^{\dagger}$ or $\left(Q P_{n}^{\perp}\right)^{\dagger}=$ $\left(1-Q^{\perp} P_{n}^{\perp}\right)^{-1} \cdot\left(Q P_{n}^{\perp}\right)\left(Q P_{n}^{\perp}\right)^{+}$.

The following result is a modification of [3, Proposition 2]; we could give a proof similar to the one in [3], but instead adopt the generalized inverse method again:

Proposition 3.4. Let $S_{n} \rightarrow{ }^{5} 1$ (S_{n} is defined as before), and let $\operatorname{dim} \operatorname{ker} T<\infty$. Then $P_{n} \rightarrow{ }^{s} 1$ if and only if there exists a sequence $\left\{R_{n}\right\}$ of projectors and a projector R on H such that

$$
\begin{equation*}
R_{n} \xrightarrow{u} R, \quad R_{n} R_{n}^{\dagger} \xrightarrow{u}\left(T^{\dagger} T\right)^{+}, \quad \text { and } \quad P_{n} R_{n}^{\dagger} R_{n}=R_{n}^{\dagger} R_{n} . \tag{3.3}
\end{equation*}
$$

Proof. Write $Q=T^{\dagger} T$. If $P_{n}{ }^{\mathrm{s}} 1$, then since rank Q^{\dagger} is finite we see $P_{n} Q^{\perp} \rightarrow^{\text {" }} Q^{\perp}$ and $P_{n}^{\perp} Q^{\perp}{ }^{\text {" }} 0$. Put $R_{n}=\left(P_{n} Q^{\perp}\right)^{\dagger}$. Then we see that each R_{n} is a projector and the sequence $\left\{R_{n}\right\}$ is uniformly bounded, say, by (3.2) (exchange P_{n} and Q). Hence $R_{n} \rightarrow^{" 4}\left(Q^{\perp}\right)^{\dagger}=Q^{\perp}$ (cf. proof of Proposition 2.3). Putting $R=Q^{\perp}$, we at once obtain all the conditions in (3.3). Conversely, assume that R_{n} and R are projectors satisfying (3.3). Then, taking the limits of $R_{n}=R_{n} R_{n}^{+} \cdot R_{n}$ and $R_{n} R_{n}^{\dagger}=R_{n} \cdot R_{n} R_{n}^{\dagger}$, we see that $\operatorname{ran} R=\operatorname{ran} Q^{\perp}$ or $R R^{\dagger}=Q^{+}$. Hence $R_{n} R_{n}^{\dagger} \rightarrow{ }^{4} R R^{\dagger}$, so that $R_{n}^{\dagger} R_{n} \rightarrow{ }^{4} R^{\dagger} R$, say, by Proposition 2.3. Hence we have $P_{n} R^{\dagger} R \rightarrow{ }^{5} R^{\dagger} R$. Since $S_{n} \rightarrow{ }^{5} 1$, we also have $P_{n}^{*} Q \rightarrow{ }^{5} 0$ or $P_{n} Q \rightarrow{ }^{5} Q$ by Theorem 3.1. Hence all we have to do is to show
that $U:=R^{\dagger} R+Q$ is invertible or equivalently strictly positive (i.e., $(U x, x)>0$ for any $x \neq 0$). Note that ker $T=\operatorname{ran} R$ and R is a projector. Hence $(\operatorname{ker} T)^{\perp}=(\operatorname{ran} R)^{\perp}=(\operatorname{ker}(1-R))^{\perp}$, that is, $Q=(1-R)^{\dagger}(1-R)$. Since $A^{*} A \leqslant\|A\|^{2} A^{\dagger} A$ (i.e., $\left(A^{*} A x, x\right) \leqslant\|A\|^{2}\left(A^{\dagger} A x, x\right)$) for $A \in \mathrm{CR}(H)$, we have

$$
\begin{aligned}
U & =R^{\dagger} R+(1-R)^{\dagger}(1-R) \geqslant\|R\|^{-2} R^{*} R+\|1-R\|^{-2}(1-R)^{*}(1-R) \\
& \geqslant m\left\{R^{*} R+(1-R)^{*}(1-R)\right\} \geqslant m \cdot \frac{1}{2}\{R+(1-R)\}^{*}\{R+(1-R)\}=\frac{1}{2} m
\end{aligned}
$$

where $m=\min \left\{\|R\|^{-2},\|1-R\|^{-2}\right\}$. This completes the proof.

Acknowledgment

We would like to express our hearty thanks to the referees for their valuable comments.

References

1. P. M. Anselone and M. Z. Nashed, Perturbations of outer inverses, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 163-168, Academic Press, New York/London, 1980.
2. A. Ben-Israel and T. N. Greville, "Generalized Inverses: Theory and Applications," Wiley, New York, 1974.
3. C. de Boor, Convergence of abstract splines, J. Approx. Theory 31 (1981), 80-89.
4. R. E. Chang, The generalized inverses and interpolation theory, in "Recent Applications of Generalized Inverses" (S. L. Campbell, Ed.), Pitman, New York, in press.
5. F. J. Delvos, Splines and pseudoinverses, RAIRO Anal. Numér. 12 (1978), 313-324.
6. F. J. Delvos and W. Schempp, Optimal approximation and the method of least squares, J. Approx. Theory 33 (1981), 214-223.
7. C. W. Groetsch, "Generalized Inverses of Linear Operators: Representation and Approximation," Dekker, New York/Basel, 1977.
8. C. W. Groetsch, Generalized inverses and generalized splines, Numer. Funct. Optim. 2 (1) (1980), 93-97.
9. R. B. Holmes, "A Course on Optimization and Best Approximation," Springer-Verlag, Berlin/Heidelberg/New York, 1972.
10. S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tôhoku Math. J. 34 (1982), 43-52.
11. M. Z. Nashed, Ed., "Generalized Inverses and Applications," Academic Press, New York/London, 1976.
12. M. Z. Nashed, Perturbations and Approximations for generalized inverses and linear operator equations, in "Generalized Inverses and Applications" (M. Z. Nashed, Ed.), pp. 325-396, Academic Press, New York, 1976.
13. B. Shekhtman, Unconditional convergence of abstract splines, J. Approx. Theory $\mathbf{3 0}$ (1980), 237-246.
14. G. W. Stewart, On the perturbations of pseudo-inverses, projections, and linear squares problems, SIAM Rev. 19 (1977), 634-662.
15. P.-A. Wedin, Perturbation theory for pseudo-inverses, BIT 13 (1973), 217-231.
